182 research outputs found

    Rumba : a Python framework for automating large-scale recursive internet experiments on GENI and FIRE+

    Get PDF
    It is not easy to design and run Convolutional Neural Networks (CNNs) due to: 1) finding the optimal number of filters (i.e., the width) at each layer is tricky, given an architecture; and 2) the computational intensity of CNNs impedes the deployment on computationally limited devices. Oracle Pruning is designed to remove the unimportant filters from a well-trained CNN, which estimates the filters’ importance by ablating them in turn and evaluating the model, thus delivers high accuracy but suffers from intolerable time complexity, and requires a given resulting width but cannot automatically find it. To address these problems, we propose Approximated Oracle Filter Pruning (AOFP), which keeps searching for the least important filters in a binary search manner, makes pruning attempts by masking out filters randomly, accumulates the resulting errors, and finetunes the model via a multi-path framework. As AOFP enables simultaneous pruning on multiple layers, we can prune an existing very deep CNN with acceptable time cost, negligible accuracy drop, and no heuristic knowledge, or re-design a model which exerts higher accuracy and faster inferenc

    RawHDR: High Dynamic Range Image Reconstruction from a Single Raw Image

    Full text link
    High dynamic range (HDR) images capture much more intensity levels than standard ones. Current methods predominantly generate HDR images from 8-bit low dynamic range (LDR) sRGB images that have been degraded by the camera processing pipeline. However, it becomes a formidable task to retrieve extremely high dynamic range scenes from such limited bit-depth data. Unlike existing methods, the core idea of this work is to incorporate more informative Raw sensor data to generate HDR images, aiming to recover scene information in hard regions (the darkest and brightest areas of an HDR scene). To this end, we propose a model tailor-made for Raw images, harnessing the unique features of Raw data to facilitate the Raw-to-HDR mapping. Specifically, we learn exposure masks to separate the hard and easy regions of a high dynamic scene. Then, we introduce two important guidances, dual intensity guidance, which guides less informative channels with more informative ones, and global spatial guidance, which extrapolates scene specifics over an extended spatial domain. To verify our Raw-to-HDR approach, we collect a large Raw/HDR paired dataset for both training and testing. Our empirical evaluations validate the superiority of the proposed Raw-to-HDR reconstruction model, as well as our newly captured dataset in the experiments.Comment: ICCV 202

    A Survey on Passing-through Control of Multi-Robot Systems in Cluttered Environments

    Full text link
    This survey presents a comprehensive review of various methods and algorithms related to passing-through control of multi-robot systems in cluttered environments. Numerous studies have investigated this area, and we identify several avenues for enhancing existing methods. This survey describes some models of robots and commonly considered control objectives, followed by an in-depth analysis of four types of algorithms that can be employed for passing-through control: leader-follower formation control, multi-robot trajectory planning, control-based methods, and virtual tube planning and control. Furthermore, we conduct a comparative analysis of these techniques and provide some subjective and general evaluations.Comment: 18 pages, 19 figure

    Distributed Control for a Multi-Agent System to Pass through a Connected Quadrangle Virtual Tube

    Full text link
    In order to guide the multi-agent system in a cluttered environment, a connected quadrangle virtual tube is designed for all agents to keep moving within it, whose basis is called the single trapezoid virtual tube. There is no obstacle inside the tube, namely the area inside the tube can be seen as a safety zone. Then, a distributed swarm controller is proposed for the single trapezoid virtual tube passing problem. This issue is resolved by a gradient vector field method with no local minima. Formal analyses and proofs are made to show that all agents are able to pass the single trapezoid virtual tube. Finally, a modified controller is put forward for convenience in practical use. For the connected quadrangle virtual tube, a modified switching logic is proposed to avoid the deadlock and prevent agents from moving outside the virtual tube. Finally, the effectiveness of the proposed method is validated by numerical simulations and real experiments.Comment: 12 pages,14 figures. arXiv admin note: substantial text overlap with arXiv:2112.0100

    Distributed Control within a Trapezoid Virtual Tube Containing Obstacles for UAV Swarm Subject to Speed Constraints

    Full text link
    For guiding the UAV swarm to pass through narrow openings, a trapezoid virtual tube is designed in our previous work. In this paper, we generalize its application range to the condition that there exist obstacles inside the trapezoid virtual tube and UAVs have strict speed constraints. First, a distributed vector field controller is proposed for the trapezoid virtual tube with no obstacle inside. The relationship between the trapezoid virtual tube and the speed constraints is also presented. Then, a switching logic for the obstacle avoidance is put forward. The key point is to divide the trapezoid virtual tube containing obstacles into several sub trapezoid virtual tubes with no obstacle inside. Formal analyses and proofs are made to show that all UAVs are able to pass through the trapezoid virtual tube safely. Besides, the effectiveness of the proposed method is validated by numerical simulations and real experiments.Comment: 11 pages, 12 figure

    Hybrid Spectral Denoising Transformer with Guided Attention

    Full text link
    In this paper, we present a Hybrid Spectral Denoising Transformer (HSDT) for hyperspectral image denoising. Challenges in adapting transformer for HSI arise from the capabilities to tackle existing limitations of CNN-based methods in capturing the global and local spatial-spectral correlations while maintaining efficiency and flexibility. To address these issues, we introduce a hybrid approach that combines the advantages of both models with a Spatial-Spectral Separable Convolution (S3Conv), Guided Spectral Self-Attention (GSSA), and Self-Modulated Feed-Forward Network (SM-FFN). Our S3Conv works as a lightweight alternative to 3D convolution, which extracts more spatial-spectral correlated features while keeping the flexibility to tackle HSIs with an arbitrary number of bands. These features are then adaptively processed by GSSA which per-forms 3D self-attention across the spectral bands, guided by a set of learnable queries that encode the spectral signatures. This not only enriches our model with powerful capabilities for identifying global spectral correlations but also maintains linear complexity. Moreover, our SM-FFN proposes the self-modulation that intensifies the activations of more informative regions, which further strengthens the aggregated features. Extensive experiments are conducted on various datasets under both simulated and real-world noise, and it shows that our HSDT significantly outperforms the existing state-of-the-art methods while maintaining low computational overhead. Code is at https: //github.com/Zeqiang-Lai/HSDT.Comment: ICCV 202

    Improving Person Re-identification by Attribute and Identity Learning

    Full text link
    Person re-identification (re-ID) and attribute recognition share a common target at learning pedestrian descriptions. Their difference consists in the granularity. Most existing re-ID methods only take identity labels of pedestrians into consideration. However, we find the attributes, containing detailed local descriptions, are beneficial in allowing the re-ID model to learn more discriminative feature representations. In this paper, based on the complementarity of attribute labels and ID labels, we propose an attribute-person recognition (APR) network, a multi-task network which learns a re-ID embedding and at the same time predicts pedestrian attributes. We manually annotate attribute labels for two large-scale re-ID datasets, and systematically investigate how person re-ID and attribute recognition benefit from each other. In addition, we re-weight the attribute predictions considering the dependencies and correlations among the attributes. The experimental results on two large-scale re-ID benchmarks demonstrate that by learning a more discriminative representation, APR achieves competitive re-ID performance compared with the state-of-the-art methods. We use APR to speed up the retrieval process by ten times with a minor accuracy drop of 2.92% on Market-1501. Besides, we also apply APR on the attribute recognition task and demonstrate improvement over the baselines.Comment: Accepted to Pattern Recognition (PR
    • …
    corecore